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1. INTRODUCTION
Bandwidth efficient modulation techniques using bounded

bandwidth is sought in digital communications. Symbol set
design is the minimizing of the probability of bit error (Pb) at
a specific normalized signal-to-noise ratio

(
Eb
No

)
[4]. Optimal

constellations with lower Pb at specified Eb
No

have numerous
applications in digital communications. Lowering the inter-
symbol interference reduces Pb, but normally this comes at
cost of increased signal power or decreased noise interjec-
tion. Typical links have distortion elements in channel fil-
ters and amplifier nonlinearities that cannot be eliminated
or, in some cases, reduced. Military communications face
all types of noise interjection when an enemy attempts to
reduce allied information exchange. Therefore, optimizing
symbol set constellations is absolutely necessary for lowering
this inter-symbol interference.

Investigated1 is the ability of a Multiobjective Evolution-
ary Algorithm (MOEA), the multiobjective fast messy GA
(MOMGA-IIa), to optimize two dimensional (4, 8,..., and
256)-ary symbol set design for a decreased Pb at certain(

Eb
No

)
. The combinatorics of this problem call for a stochas-

tic search algorithm that can be used in optimizing both
single- and multi-objective problems because the models
generated to capture this symbol set design problem are
constructed as both single and multi-criteria problems [5].

2. ALGORITHM
The MOMGA-IIa is a multiobjective version of the fmGA

that has the ability to achieve a semi-partitioned search in

1The views expressed in this article are those of the authors
and do not reflect the official policy of the United States Air
Force, Department of Defense, or the U.S. Government.

Copyright is held by the author/owner.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

both the genotype and, in multiobjective mode, phenotype
domains during execution. It is an algorithm that exploits
good building blocks (BBs) in solving optimization prob-
lems. These explicit BBs represent good information in the
form of partial strings that can be combined to obtain bet-
ter solutions. The MOMGA-IIa algorithm executes in three
phases: Initialization, Building Block Filtering, and Juxta-
positional.

Beginning with the Probabilistically Complete Initializa-
tion (PCI) Phase, the algorithm randomly generates a user
specified number of population members. These population
members are constructed to a specified chromosome length
and each is evaluated to determine its respective fitness val-
ues. A binary alphabet is used.

The Building Block Filtering (BBF) Phase follows by ran-
domly deleting loci and their corresponding allele values in
each of the population member’s chromosomes. This pro-
cess completes once the length of the population member’s
chromosomes have been reduced to a predetermined BB size.
These reduced chromosomes are referred to as underspeci-
fied2 population members. In order to evaluate population
members that have become underspecified, competitive tem-
plates (CTs) are utilized to fill in the missing allele values.
Evaluation consists of the partial string being overlayed onto
a CT just prior to evaluation. CTs are fully specified chro-
mosomes that evolve as the algorithm executes. CT replace-
ment is done after each BB generation. In the MOMGA-IIa,
competent CTs that partition both the phenotype and geno-
type are selected for advancement. This innovative balance
is achieved through two mechanisms: Orthogonal CT gen-
eration and Target Vector (TV) guidance. Orthogonal CT
generation is used to partition the genotype space, while TV
guidance is used, when MOMGA-IIa is running in multiob-
jective mode, to partition the phenotype space. TVs are
normalized fitness markers that capture one solution per
vector for future CT replacement. In the MOMGA-IIa, tar-
get vectors are used in a manner to divide the normalized
fitness space of pareto-front members and select a distribu-
tion of CTs that fall nearest to each TV. Also, an orthogonal
bank of chromosomes is used to filter a randomly selected
CT through for creation of a set of orthogonal CTs.

The BBF process is alternated with a selection mechanism
to keep only the best BBs found, or those with the best
number of fitness values. In the case of a tie, where two
strings each have an equal number of better fitness values
(i.e. each have m

2
best fitness values), the string is randomly

2An underspecified chromosome is chromosome where some,
but not all locus positions have an associated allele value.
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Figure 1: Presented is the best constellations and
associated SNRs found for 4 bit symbol set.

selected between the two. In MOMGA-IIa each string has
f = (c ∗ m + i + o) ∗ m fitness values associated with it –
corresponding to the m objective functions to optimize, c
competitive templates, i inverse templates (equal to c ∗m),
and o orthogonal templates.

Finally, the juxtapositional phase uses BBs found in the
BBF phase and recombination operators to create chromo-
somes that are fully specified. The MOMGA-IIa has an
outer and inner loop that must be completely iterated through
using each BB size and epoch before terminating. Next, the
problem domain is described in detail.

3. FITNESS FUNCTION
Previous researchers either use different coding methods

or symbol positioning to get better Pb at particular Eb
No

[1, 3,

4]. In our models the MOMGA-IIa optimizes both by assign-
ing each symbol its bit-wise representation while assigning it
a location in space. However, the challenge was found not to
be what to optimize or how to represent the problem, but
what model (fitness function) best represented the Monte
Carlo simulation used to check constellations for goodness.
Normally, new constellations would be tested using a Monte
Carlo simulator where a random stream of symbols are en-
coded into a signal, s, using the amplitude and phase of
symbols identified in a designed constellation. Next, noise
is added to the generated signal, (s + n), to simulate the
transmission process. The amount of noise added to the
signal is related to the Eb

No
under test. Then, the signal

is decoded and a reconstructed symbol stream is generated
from the noisy signal. Finally, the number of bit errors are
calculated by comparing the reconstructed symbol stream
to the originally transmitted symbol stream. This test is re-
run until enough data is collected to assign a Pb rate to that
particular constellation at the Eb

No
under test. Four differ-

ent analytical models are designed in search of the optimal
balance between computational time and model correctness.
Five models are tested. The first four designs are analytical
approximates for this digital system and the fifth design is
the Monte Carlo simulation.

Each model uses symbols placed inside a unit circle for
amplitude and phase characteristics for each symbol [2].
Each symbol bit pattern is defined to be in one and only
one place within the genome. Placement is in binary or-
der, {00, 01, 10, 11}, and each symbol has d = 2 degrees of
freedom to define its location in the space.

3.1 Brute force model:
The brute force model takes into account our intuition

about how to represent this problem using a high level of

understanding of the problem domain. A maximization con-
stellation fitness function is sought; therefore, a negative ex-
ponential decay of the distance is used to emphasize a larger
space between symbols is better. The exponential decay is
modified using a constant K value to increase or decrease
the rate of decay depending on the number of symbols in the
constellation. Finally, to account for the bit error increasing
when encountering a high hamming code distance between
symbols, the exponential decaying distance is multiplied by
the hamming code distance, found in the H matrix, of the
two symbols.

4. RESULTS AND ANALYSIS
MOMGA-IIa constellations having 2, 3, 4, and 5 bits all

compete well with the x-rectangular constellation theoretical
best. The 4 bit comparisons are graphically presented in
Figure 1.

The MOMGA-IIa has found good constellations using the
brute force model. Although MOMGA-IIa solutions did not
beat the x-rectangular constellation theoretical best, they
did compete rather well. This is validated using standard
Amplitude Modulation techniques in use today. Theoreti-
cally, there exists a constellation that have lower Pb than the
x-rectangular constellations at certain Eb

No
s; however, those

constellations evade researchers in the field today and the
MOMGA-IIa so far.

Since, this is a new angle on an old problem. Many dif-
ferent techniques can be used to increase the effectiveness
of the MOMGA-IIa in solving this problem. Right now, the
model needs to be modified to yield maximum fitness value
at the same constellation that the Monte Carlo simulation
validates to be the lowest Pb. So far, a better model escapes
us. Our current models show little correlation to the current
simulation model. Once a model is found for finding good
constellations for use on signals subject to additive White
Gaussian Noise, a new model can be derived to find constel-
lations for noisy signals having other types of noise. In fact,
the ultimate goal would be to have a channel noise probe
identify the noise over a channel and back propagates this
information to an EA that searches for an optimal symbol
set for that channel. Once the symbol set was defined for the
unknown noise in the channel, communicators would have
the best symbol set for that digital system.
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